http://crypto.fmf.ktu.lt/

http://crypto.fmf.ktu.lt/telekonf/archyvas/M100%20KriptoSistemos/KS%202022/

http://crypto.fmf.ktu.lt/xdownload/

- octave-6.3.0-w64-installer.exe
- octave.m.7z

GNU Octave, version 6.3.0

Copyright (C) 2021 The Octave Project Developers.

This is free software; see the source code for copying conditions. There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For details, type 'warranty'.

Octave was configured for "x86_64-w64-mingw32".

additional information about Octave is available at https://www.octave.org.

Please contribute if you find this software useful.
For more information, visit https://www.octave.org/get-involved.html

Read https://www.octave.org/bugs.html to learn how to submit bug reports.
For information about changes from previous versions, type 'news'.

Skills of Mass Disruption Tecnologies Įgūdžiai Masinio Proveržio Technologijose

Fintech: Skills related to technologies such as **blockchain** and others aimed at making **financial transactions more efficient and secure**.

Table 1: Job Openings and Growth by Disruptive Skill Area

Skill Area	Total Job Openings (Last 12 Months)	Projected 5-Year Demand Growth
Software Dev Methodologies	634,660	35%
Cloud Technologies	462,963	28%
Proactive Security	373,123	39%
IT Automation	282,380	59%
Al and Machine Learning	197,810	71%
Connected Technologies	68,313	104%
NLP	36,941	41%
Fintech	35,667	96%
Parallel Computing	11,056	17%
Quantum Computing	2,718	135%

Table 3: Average Salary Premium by Disruptive Skill Area

Skill Area	Average Salary Premium	
IT Automation	\$24,969	
Al and Machine Learning	\$14,175	
Fintech	\$13,799	
Software Dev Methodologies	\$13,762	
Connected Technologies	\$10,873	
Cloud Technologies	\$10,588	
Proactive Security	\$8,851	
Parallel Computing	\$7,797	
NLP	\$6,368	
Quantum Computing	\$4,204	

Students and Job Seekers.

Identify and Learn High-Value Disruptive Skills.

The disruptive tech skills are growing rapidly and can lead to significant salary boosts.

Individuals who identify and develop these future-ready skills – and continuously update their skill sets as new needs emerge – will be best-positioned to enhance their career prospects, both in tech and beyond.

51% of network computing power pake chain

$$H(B) = h$$
; $|h| = 256$ bit
 $|B| \sim 16B$
Finger print
 H -function; Message digest

$$h \sim 2^{256} \qquad 1K = 2^{10} = 1024$$

$$1M = 2^{20}$$

$$1G = 2^{30}$$

$$1T = 2^{40} = 1$$

$$1 = 2^{40} = 1$$

>> 2^28-1
ans = 2.6844e+08
>> int64(2^28-1)
ans = 268435455
>> dec2bin(ans)
ans = 111111111111111111111111

In our case we will use $P \sim 2^{28}$; |P| = 28 bits arithm.

PoW - Proof-of-Work - Mining

Pow-Proof-of-Work - Mining
Susenting (reward)

(1. To define a rules of block acceptance.

2. To advice the consensus of block validation in the net.

Bitcoin

By "Satoshi Nakamoto"

15at = 10 8 BTC 1BTC = 100 000 000 Sat

Where was it harvested/processed?

What batch does it belong to?

Who has been in contact with it?

12020

Permissioned Blackchain

Containers: **IBM** and containers shipping giant **Maersk Group**. **Maersk Group** is No 1 in the top 10 transport companies.

3 stud.: IBM DLT vs Ethereum Blockchain

PoW-Proof of Work

Electric energy consumption kWh $1 \text{kWh} \sim 0.13 \text{ EUV}$. $54 \text{TWh} = 54 \cdot 10^9 \text{ kWh}$ $1 \text{TWh} = 10^{12} \text{ Wh}$

Application Specific Intrgrated Circuits - ASIC --> mining

Farm is using a huge el. power [W] - watt

In I hosehold EP~5kW

During I hour Energy = 5 KWh

In 1 hosemora #+ ~ OKW

During I hour Energy = 5 KWh 0,65 €

To charge e-vehile 20-50 kW Farm can commune ~ 500 KW - (1 MW)

During I hour you'll consume Energy = IMWh = 1000 kWh 1000 kWh * 0,13 € = 130 €

51% Attack

Computation power of mining related to the speed of h-values computation Vn ~ THash/sec E.g. Vh = 1000 THash/sec Total network has $V_h = 1900 TH/S$

> 51% Network power

1000 TH/s is more then 51% 1900 TH/S

51% Attack

From Laurynas Veščiūnas to Everyone 06:20 PM https://batcoinz.com/50-landfills-mining-bitcoin-a-zeroemission-bitcoin-network/

čia straipsnis, kur praeitą kartą minėjau dėl BTC kasimo

Energie usage 🔼

Mining pools -> centralization 😡

-> We need new algorithm!

Ethereum $1Eth \sim 2300 $$

Ethereum $1Eth \sim 2300 $$

The name of cryptocurrency in Ethereum blockchain is named as Ether - Eth

Vitalik Buterin

Eth - 32 Eth put into the

"shell" to make a

right to mine a block

The difficulty of validate is low -

- the speed of validation is increased.

1 Wei = 10⁻¹⁸ Eth

1 Eth = 1000 000 000 000 000 000 Wei

To mine a block consisting of a lot of transactions
- every transaction has declared a reward in Gas for its validat.

- Mistaken validated Clock

To empty your deposit after some time.

Ethereum 2.0 32 Eth; 1Eth~140\$

Ethereum, Libra, ... etc.

Fiat currency

Validator generated Public Key Cryptosystem-PKCS private key PrK = x and public key PuK = a: $\alpha = g^x mad p$. Block B validation by validator V: (Prk, Puk)

- 1. H(B) = h; h-value computation
- 2. Validator signs a block B, placing a signature on h: Sign(PrK, h) = S

Go: 1. Prk & Puk generation 2. Smart contract signing malware

Secure Prk, Puk generation & signing

Computer X (PrK, PuK) → Flashtoken Go Trust (Taiwan)

∠ 1000 T_X/5
 → 15 000 T_X/S
 ECDSA 512 bits

Max BTC ~ 20 000 000

Max BTC ~ 20 000 000 $1 \text{ BTC} = 10^8 \text{ Sat}$ $20.10^6.10^8 = 20.10^{14} = 2000 \text{ TSat}$